| Course Code | PEU5304 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Level | 5 |  |  |  |  |  |
| Course Title | Introduction to Complex Analysis |  |  |  |  |  |
| Credit value | 3 |  |  |  |  |  |
| Core/Optional | Core for Pure Mathematics as major discipline |  |  |  |  |  |
| Prerequisites | PEU 4300 (pass valid OCAM)+PEU 4301(Pass valid OCAM) |  |  |  |  |  |
| Hourly breakdown |  | heory | Practical | Independent Learning | Assessment | Total |
|  | $25^{*} 2=50 \mathrm{hrs}$ | DS hrs =4*3 = 12 hrs |  | $25 * 3=75$ hours Online learning = 11 hours | $\mathrm{CA}=2 \mathrm{hrs}$ | 150 hrs |
| Course Aim/s. | Describe the definition of complex numbers, its properties, algebra of complex numbers and able to define and apply this knowledge in functions of complex variables |  |  |  |  |  |
| PLOs addressed by course | PLO1: Knowledge: Explain the fundamental, principles and broader knowledge pertaining to the chosen science disciplines offered for the degree.. <br> PLO3: Communication: Demonstrate the competency in communicating efficiently and effectively to present information, ideas and concepts to the scientific community as well as to the wider society. <br> PLO4: Individual Work, Team Work and Leadership: Demonstrate the competency in working independently and in groups in addressing issues in multi-disciplinary environments and completing the tasks on time through collaborative learning while exhibiting leadership. <br> PLO5: Creativity and Problem Solving: Identify and analyze problems using quantitative and/or qualitative approaches using scientific methodology to provide valid conclusions. <br> PLO9: Lifelong Learning: Develop the capacity to foresee new trends and their impacts and continuously update knowledge and develop skills willingly to meet those future challenges. |  |  |  |  |  |
| Course Learning Outcomes (CLO) | At the completion of this course student will be able to <br> CLO1 : define the fundamental concept of complex numbers and its properties (PLO1,3,4,5,9) <br> CLO2 : describe the complex number in the complex plane and evaluate the powers of a complex numbers (PLO1,3,4,5,9) <br> CLO3 : find the roots of a complex polynomial (PLO1,3,4,5,9) <br> CLO4 : define and evaluate the values of some complex functions (PLO1,3,4,5,9) <br> CLO5: define the distance function, neighborhoods in the complex plane and identify limit points of subsets of the complex plane (PLO1,3,4,5) <br> CLO6: determine convergence or divergence of a sequence of complex numbers and test the convergence or divergence of a series of complex numbers (PLO1,3,4,5,9) <br> CLO7: find the limit of a complex valued function at a point and determine the continuity of a function (PLO1,3,4,5,9) <br> CLO8: use Cauchy-Riemann equation to decide the differentiability and analyticity of a complex valued function (PLO1,3,4,5,9) |  |  |  |  |  |
| Content (Main topics, sub topics) | Unit - I (Part A) <br> Path to complex numbers, Definition of a complex numbers, Algebra of complex numbers, Absence of a natural order for complex numbers, point representation of a complex numbers, Complex conjugate and absolute value, Argument of a complex numbers, Polar form of a complex numbers, Constructions and loci in the complex numbers. <br> Unit - I (Part B) <br> Integer powers of complex numbers, Rational powers of complex numbers, Zeros of a complex numbers, Complex exponential function, Complex trigonometric function, Complex hyperbolic function, Complex logarithmic function, Irrational power complex numbers, Complex power complex numbers, Inverse trigonometric and hyperbolic function. <br> Unit - II <br> The distance function, neighborhoods, limit points of a set, convergence of a complex sequence, convergence of a complex series, Tests for convergence, Limit and continuity of a complex function, Discontinuity of Argument function, Derivative of a complex function, Cauchy-Riemann equations, Analytic functions. |  |  |  |  |  |
| Teaching Learning methods (TL) | Self-Learning/Independent learning of Self-study <br> - Instructional Material (IL) <br> - Online Activities (OL) <br> - Reference Work (RF) <br> Compulsory contact sessions <br> - Assessments (AS) and Feedback - MCQs (MCQ);Structured Essay (SEQ); Essay Questions (ES) <br> Non-compulsory contact sessions <br> - Day Schools (DS) |  |  |  |  |  |


| Assessment strategy | Overall CA Mark (OCAM): 40\% | Final Assessment: 60\% |
| :---: | :---: | :---: |
|  | ```Details: Continuous Assessment1 (CAT1): -1 hr Continuous Assessment2 (CAT2): -1 hr OCAM = 60%of Maximum(CAT1, CAT2) + 40%of Minimum(CAT1, CAT2)``` | Final Evaluation -Theory: 100\%-2hrs |
| Recommended Readings: | - Saff E.B, Snider A.D. (2003). Fundamentals of Complex Analysi Mathematics ( $3^{r d}$ Edition). Pearson. <br> - Ruel V Churchill, James Brown W. (2013). Complex variabi Education. <br> - Convey J.B. (1978). Functions of one complex variable (2 ${ }^{\text {nd }}$ Edition) | with Applications to Engineering Science and <br> \& Applications (9 ${ }^{\text {th }}$ Edition). McGraw-Hill <br> ). Springer- Verlag. |

