Applied Mathematics

Course Code	ADU3300					
Level	03					
Course Title	Vector Algebra					
Credit value	3					
Core/Optional	Core.					
Prerequisites	Pass in G.C.E. Advanced Level Combined Mathematics/ Higher Mathematics or Equivalent					
Hourly breakdown			Practical hours	Indep	Assessments	Total hrs
	$25 \times 2=50$ hours	$4 \times 3=12$ Day School hours	N/A	25 Online hours	$C A=2$ hours	150 hours
Course Aim/s.	To learn the basic concepts of vectors and algebra of vectors to solve problems related to straight lines, planes, circles and other applications in geometry and to use elementary vector calculus to solve real world problems in mechanics.					
PLOs addressed by course	PLO1: Knowledge: Explain the fundamental, principles and broader knowledge pertaining to the chosen science disciplines offered for the degree. PLO2: Practical Knowledge and Application. Demonstrate the competency to use the knowledge and practical skills appropriately. PLO4: Individual Work, Team Work and Leadership: Demonstrate the competency in working independently and in groups in addressing issues in multi-disciplinary environments and completing the tasks on time through collaborative learning while exhibiting leadership. PLO5: Creativity and Problem Solving: Identify and analyze problems using quantitative and/or qualitative approaches using scientific methodology to provide valid conclusions. PLO8: Vision for Life: Develop the capacity to project for future through identifying self-directed goals and continuously targeting towards them for self-improvement by undertaking further studies. PLO9: Lifelong Learning: Develop the capacity to foresee new trends and their impacts and continuously update knowledge and develop skills willingly to meet those future challenges.					
Course Learning Outcomes (CLO)	At the com CLO1: CLO2: CLO3: CLO4: CLO5: CLO6: CLO7: CLO8: CLO9: CLO10:	his course vectors (PLO1) eometricall). linearly in whether vector eq vector forms (PL parametr normal fo operatio rivative a basic mec vector eq	dent will be able scalars and to he scalar produ ndent and linea vectors are col n of a straight-l on of a straigh PLO2, PLO4, P Cartesian form the vector equ th vector valued tegral of vector (PLO1, PLO2 of a circle,	rm scala vector pendent or copla asses thr passes e vector of a plan tions (PL duncti 4, PLO5 la, ellip	ion and subtractio ar tripe product (PL). O5). arallel to a given ve points both in para PLO1, PLO2, and PLO5).). concepts to solve pron nd sphere (PLO1,	of two or PLO2, r and to tric and 5). blems in O2, and
Content (Main topics, sub topics)	Scalars, Vectors and Addition of Vectors, Multiplication of Vectors by Scalars, Centroids, Linear Combinations of Vectors, Vectors in Two and three Dimensions in Component Form, The Straight Line, Scalar and Vector product, Geometrical Proofs Using Scalar and Vector Products, Scalar and Vector Triple Product, Parametric Form of the Vector Equation of a Plane, The Normal Form of the Vector Equation of a Plane, Proofs of Well Known Theorems in Plane Geometry, Vector Functions, Differentiation of Vector Functions, Integration of Vector Functions, The Vector Equation of a Circle, Parabola, Ellipse, Hyperbola, and Sphere, Curves in Space					
Teaching Learning methods (TL)	Self-Learning/Independent learning of Self-study - Instructional Material (IL) - Online Activities (OL) - Reference Work (RF) Compulsory contact sessions - Assessments (AS) and Feedback - MCQs (MCQ); Structured Essay (SEQ); Essay Questions (ES); Non-compulsory contact sessions - Day Schools (DS)					
Assessment	Overall	us Assess	Mark (OCAM):		ssment (FA): 60\%	

strategy	Details: Continuous Assessment1 (CAT1): -1 hr Final Evaluation -Theory: $100 \%-2 \mathrm{hrs}$ Continuous Assessment2 (CAT2): -1 hr OCAM $=60 \%$ Maximum(CAT1, CAT2) + 40% Minimum(CAT1, CAT2)
Recommended Readings:	- Davis H.F, Snider A.D. (1995). Introduction to Vector Analysis (7 ${ }^{\text {th }}$ Edition). McGraw-Hill Education. - Narayan S, Mital P.K. (2005). Vector Algebra (19 ${ }^{\text {th }}$ Edition). S Chand Publishers. - Saran N, Prasad R. (1991). Elements of Vector Calculus (2016 Edition). Pothishala Pvt Ltd. - Turner L.K. (1975). Adanced Mathematics: Introduction to Vectors and Mechanics (1st Edition). Longman Publishers. - Pandey G.S, Sharma R.R. (1988). Vectors and Geometry (2 ${ }^{\text {nd }}$ Edition). New Age International Publishers. - Gupta R. (2011). Vector Calculus (4 ${ }^{\text {th }}$ Edition). Laxmi Publications.

