Course Code	PEU3202						
Level	03						
Course Title	Vector Spaces						
Credit value	2						
Core/Optional	Core						
Prerequisites	PEU3300 (Pass / valid OCAM / CR) and PEU3301 (Pass / valid OCAM / CR)						
House						Tetal	
houriy	ineory		Practical	independent Learning	Assessments	lotal	
Dieakuowii	$15X_{2} = 30$ brs	DS bre -	nours	Sessions (15x 3) = 45	Continuous	100	
	15/ 2 = 50 113	4X3 = 12	-	hrs	Assessments	100	
		hrs		 Online /Audio-visual 	(CA) = 2 hrs		
				materials and other	· · /		
				learning resources =			
				11 hrs			
Course Aim/s.	Lise Vector spaces in mathematical and science applications						
PLOs addressed							
by course	PLO1: Knowledge: Explain the fundamental, principles and broader knowledge pertaining to the chosen science						
	disciplines offered for the degree.						
	PLO2: Practical Knowledge and Application. Demonstrate the competency to use the knowledge and practical						
	skills appropriately.						
	PLO3: Communication: Demonstrate the competency in communicating efficiently and effectively to present						
	information, ideas and concepts to the scientific community as well as to the wider society.						
	PLO4: Individual Work, Team Work and Leadership: Demonstrate the competency in working independently and						
	in groups in addressing issues in multi-disciplinary environments and completing the tasks on time through						
	collaborative learning while exhibiting leadership.						
	PLO5: Creativity and Problem Solving: Identify and analyze problems using quantitative and/or qualitative						
	approaches using scientific methodology to provide valid conclusions.						
Course Learning							
Outcomes (CLO)	At the completion of this course student will be able to						
Outcomes (OEO)	CLO1. Define a field and Identify that a given action biold up depting an excitance (addition and excitant tertion) defined.						
	on the set (PI O1)						
	CLO2: Define a vector space over a field F and identify/justify/prove that a given set of vectors is a vector space						
	over a field F under the vector addition and scalar multiplication define on the set of vectors. (PLO1, PLO2, PLO3, PLO4, PLO5)						
	CLO3: Define subspace of a vector space and identify/justify/prove that a given non empty set of vectors is a						
	subspace of a given vector space. (PLO1, PLO2, PLO3, PLO4, PLO5)						
	CLO4: Define spanning set, basis of a vector space and finite dimensional vector space and use these						
	definition	s (PLO1, PLO2	2, PLO3, PLO4, PLO5	5)			
	CLO5: Define li	near Independe	ence and linear depe	endence and prove that a giv	en set of vectors are	e linearly	
	independent or not. (PLO1, PLO2, PLO3, PLO4, PLO5)						
	CLOC: Define linear transformation between two vector analogs learned and impact of a linear transformation and the						
	LLUD: Deline linear transformation between two vector spaces, kernel and image of a linear transformation and to						
	transform	ation. (PLO1.	PLO2. PLO3. PLO4. I	PLO5)		5 a intear	
	CLO7: Define ve	ector space Hor	n(V,W) and Isomorph	nism between two vector space	es and prove that a g	ven map	
	between	two vector space	es is an isomorphism	1. (PLO1, PLO2, PLO3, PLO4	PL05)		
	CLO8: Define ra	ink and nullity o	f a linear transformati	on and prove that the relations	hip between rank and	nullity of	
	a linear tr	ransformation. (nullity rank theorem)	(PLO1, PLO2, PLO3, PLO4,	PLO5)		
	CLO9: Define in	variant subspace	es and Inner product	t subspaces and use these def	initions. (PLO1, PLO	2. PI 03.	
	PLO4, PL	_O5)				, ,	
	CLOTU: Find the length of a vector in an invariant subspaces / Inner product subspaces, and find the distance and						
	PLO3. PLO4. PLO5.)						
	CLU11: Define the Euclidean space and use this definition. To be able to find the length of a vector in the Euclidean						
	space, and to find the distance and concept angle between two vectors in the Euclidean space (PLO1, PLO2 PLO3 PLO3 PLO4 PLO5)						
	1 = 02, 1 = 00, 1 = 007, 1 = 000 j						
	CLO12: Define the orthogonal set in the Euclidian space and Orthonormal Base in the Euclidian space and use these						
	definitions. Use Gram – Schmidt Orthonormalisation process to convert a given basis of Euclidean space						
	to an Orth	nonormal Base	of the Euclidean space	ce(PLO1, PLO2, PLO3, PLO4	PLO5)		

	CLO13: Use Mathlab for vector spaces (PLO1, PLO2, PLO3, PLO4, PLO5)				
Content (Main topics, sub topics)	Vector Spaces Fields, Vector spaces, Sub spaces, Spanning set and Basis of a vector space, Linear independence and dependence, Linear Transformations, Vector space Hom(V,W) and Isomorphism, Rank and nullity of a linear transformation, Invariant sub spaces and Inner product subspaces, Length of a vector in an invariant subspaces/ inner product subspaces, Distance between two vectors in an Invariant subspaces/ inner product subspaces, Concept angle between two vectors in an invariant subspaces/ inner product subspaces, Orthogonal set in the Euclidian space, Orthonormal Base in the Euclidian space, Gram – Schmidt Orthonormalisation process				
Teaching Learning methods (TL)	Self-Learning/Independent learning of Self-study Instructional Material (IL) Online Activities (OL) Reference Work (RF) Compulsory contact sessions Assessments (AS) and Feedback – MCQs (MCQ);Structured Essay (SEQ); Essay Questions (ES); Non-compulsory contact sessions Day Schools (DS) 				
Assessment	Overall Continuous Assessment Mark (OCAM): 40%	Final Assessment (FA): 60%			
strategy	Details: Continuous Assessment1 (CAT1): -1hr Continuous Assessment2 (CAT2): -1hr OCAM=60%Maximum(CAT1, CAT2) + 40%Minimum(CAT1, CAT2)	Final Evaluation -Theory: 100%-2hrs			
Recommended Readings:	 Mirsky, L. (1990). An Introduction to linear algebra (1990 Edition). Dover Publishers, New York. Bhushan, K. (2017). Matrix and linear algebra aided with MATLAB (3rd Edition). PHI Learning, Pvt. 				