Student Corner

Reductive Elimination Reactions

K. Sarath D. Perera

Senior Professor in Chemistry, Department of Chemistry, The Open University of Sri Lanka

Me

Reductive elimination (R.E.) is the opposite or the reverse of oxidative addition $(O.A.),$ in which $X-Y$ oxidatively adds on to $L_n M^{n+}$ to give $L_n(X)(Y)M^{(n+2)+}$.

$$
\begin{array}{ccc}\nL_nM & Y & \frac{R.E.}{\cdot} & L_nM^+ + & X-Y \\
\downarrow & & O.A. & & \\
X & & & \\
\end{array}
$$

 X and Y groups are combined to form $X-Y$, just before they are eliminated from the metal. Some reactions are reversible, e.g., addition and elimination of H_{2} and O_2 . R.E. is the last step in catalytic cycles.

During this process, the oxidation number (O.N.), coordination number (C.N.) and valance electron count (VEC) of the metal get reduced by **two units** as shown below.

During this process, Pd(IV) is reduced to Pd(II), octahedral \rightarrow square-planar, and $d^6 \rightarrow d^8$. Some of the common conversions are given below: e.g.,

$$
Rh(III) \rightarrow Rh(I), Ir(III) \rightarrow Ir(I),
$$

\n
$$
Co(III) \rightarrow Co(I), Pt(IV) \rightarrow Pt(II),
$$

\n
$$
Pd(II) \rightarrow Pd(0), Ni(II) \rightarrow Ni(0).
$$

The groups that are easily combined (and then eliminated) include R-H, R-R' to give **alkanes**; $H-C(=O)R$ to give **aldehydes**; $R'-C(=O)R$ to give

ketones; and X-C(=O)R to give **acid halide**s, etc.

The driving-force for these elimination processes could be the formation of stable organic molecules and/ or metal complexes.

Importance of *cis* **arrangement**

The two groups (to be eliminated) must be in the *cis* **positions** before elimination can take place. Because, only the *cis* arrangement of ligands can form a **3 centred** transition state with the metal.

Creation of this **transition state** is crucial: as reductive elimination occurs *via* a **concerted** process, hence, all bond breaking and bond-forming occur simultaneously in a single step.

In square-planar complexes, **trans groups** must rearrange to cis positions before the elimination step to take place; e.g., *trans*-[PtH(CH₂CN)(PPh₃)₂] reductive eliminates MeCN, after **isomerising** it into the *cis*isomer, *cis*-[PtH(CH₂CN)(PPh₃)₂].

Reductive elimination is facilitated:

- (i) when the positive charge on the metal centre is increased due to the formation of a cationic complex.
- (ii) when electron density (or π -basicity) of the metal centre is reduced by dissociating a good σ-donor ligand/s.

Sometimes, reductive elimination process is accelerated by prior coordination of another ligand/s; for example, in the presence of 2 equivalents of PPh_3 , [$(\eta^5$ -C₅Me₅)ZrMe₂] eliminates an ethane molecule.

Problems

1. Suggest the metal complex and the organic product(s) formed from the following reactions.

 $(dppe = Ph_2PCH_2CH_2PPh_2)$

- (i) $[(\eta^5$ -C₅Me₅)ZrMe₂ $] + 2$ PPh₃ \rightarrow
- (ii) $[(\eta^5-C_5Me_5)Zr(H)Me]$ + dppe \rightarrow
- (iii) fac -[PdIMe₃(dppe)] \rightarrow (heat)
- (iv) fac - $[RhI₃(COMe)(CO)₂]$ ⁻ \rightarrow (heat)
- (v) $trans-[PtI_2(Ph)_2(Pet_3)_2] \rightarrow (heat)$
- 2. $[TiMe₄]$ decomposes above -50 °C, but $[TiMe₄(Me₂PCH₂CH₂PMe₂)]$ is stable at room temperature. Explain.

Student Corner