Student Corner # **Crystal Field Theory** K. Sarath D. Perera Senior Professor in Chemistry, Department of Chemistry, The Open University of Sri Lanka Crystal Field Theory (CFT) supersedes valence bond theory as it provides a simple method to explain the **electronic spectra** and **magnetism** of transition metal complexes. CFT is based on the influence of incoming ligands on the **five** d-orbitals in the metal centre; which depends on the number of such ligands and the **geometry** of the compound. According to the shapes and orientation of d-orbitals, they are divided into two groups. $\mathbf{t_{2g}}$ **orbitals** - $\mathbf{d_{xy}}$, $\mathbf{d_{yz}}$ and $\mathbf{d_{xz}}$ orbitals with lobes (*i.e.* electron density) located between the x, y and z axes. $\mathbf{e_g}$ orbitals - $d(_x^2 - _y^2)$ and d_z^2 orbitals with lobes pointing along the axes. CFT is based on four main **assumptions**: - a. Ligands are considered as point charges. - b. The bonding between the metal and the ligand is entirely electrostatic. - c. There is no interaction between the metal orbitals and ligand orbitals. - d. In the free metal atom, the *d*-orbitals have the same energy, *i.e.*, they are degenerate. ### **CFT for Octahedral Complexes** As \mathbf{e}_{g} orbitals have lobes directed towards the ligands, they are strongly interacting with ligands than the $\mathbf{t}_{2\mathrm{g}}$ orbitals. Thus, \mathbf{e}_{g} orbitals have higher energy with respect to the $\mathbf{t}_{2\mathrm{g}}$ orbitals. As a result, the d-orbitals are no longer degenerate; the energy of the two \mathbf{e}_{g} orbitals is raised, while the energy of the three $\mathbf{t}_{2\mathrm{g}}$ orbitals is lowered by the same amount as shown in Figure 1. The difference in energy between the $\mathbf{t}_{2\mathrm{g}}$ and \mathbf{e}_{g} levels is denoted by the symbol Δ_{o} . The term $\Delta(\mathrm{delta})$ represents the **crystal field splitting**, and the subscript 'o' refers to the **octahedral**. Figure 1: Energy diagram for an octahedral compound ' Δ ' depends on the electrostatic field generated by the ligands; thus, some create a **stronger** field than the others. When ligands are arranged in the increasing order of their electrostatic field strength, it is known as the **spectrochemical series**. # **←** Weak field ligands $\label{eq:continuity} I^-< Br^-$< SCN^-$< Cl^-$< NO_3^-$< F^-$< OH^-$< EtOH < Oxalate $< H_2O < NCS^-$< EDTA^4^-$< NH_3$<py$<en$
bipy$<phen (1,10-phenanthroline) < NO_2^-$< PR_3$< CN^-$< CO$$ The factors which effect on the crystal field splitting are as follows. *Nature of the ligand* - Energy gap Δ varies with the type of ligands as shown below. **Figure 2:** Effect of ligand fields on Δ The charge on the metal - Δ increases with increasing of the charge on the metal ion; as the central ion with a higher charge can polarize the ligand to a great extent, thereby it increases the electrostatic field. **Position of metal centre within the Group** - Δ_o increases as the row number increases within the Group; $\Delta_o(3d) < \Delta_o(4d) < \Delta_o(5d)$. *Geometry of the complex* - For example, the splitting of \mathbf{t}_{2g} and \mathbf{e}_{g} levels in octahedral and tetrahedral complexes is quite opposite (see Figures 1 and 4). # **Crystal Field Stabilization Energy** The overall energy of a set of electrons in \mathbf{t}_{2g} and \mathbf{e}_{g} levels is known as crystal field stabilization energy (CFSE). **CFSE** = $[\mathbf{0.6m} \cdot \mathbf{0.4n}] \Delta_{o}$ for $\mathbf{t}_{2g}^{n} \cdot \mathbf{e}_{g}^{m}$ configuration, *i.e.*, for $\mathbf{t}_{2g}^{1} \cdot \mathbf{e}_{g}^{0}$, CFSE = $-0.8\Delta_{o}$ and for $\mathbf{t}_{2g}^{3} \cdot \mathbf{e}_{g}^{0}$, CFSE = $-0.8\Delta_{o}$ and for $\mathbf{t}_{2g}^{3} \cdot \mathbf{e}_{g}^{0}$, CFSE = $-1.2\Delta_{o}$. For example, Ti³⁺ ion $(\mathbf{t}_{2g}^{1} \cdot \mathbf{e}_{g}^{0})$ in $[\mathrm{Ti}(\mathbf{H}_{2}O)_{o}]^{3+}$ is stabilized by an energy amounting to $0.4\Delta_{o}$. All possible $\mathbf{t}_{2g}^{n} \cdot \mathbf{e}_{g}^{m}$ configurations for weak and strong fields are given in Table 1. For d⁴-complexes, two electron distributions (\mathbf{t}_{2g}^{4} - \mathbf{e}_{g}^{0}) and \mathbf{t}_{2g}^{3} - \mathbf{e}_{g}^{1}) are possible (see Figure 3). The electron distribution is determined by the **pairing energy** (PE) (*i.e.* the energy required to pair two electrons in an orbital) and the strength of the crystal field (Δ_{e}). - (a) The $\mathbf{t_{2g}}^3 \cdot \mathbf{e_g}^1$ configuration is favored when PE> Δ_o . These complexes are known as 'high-spin' or 'weak-field' complexes. - (b) The $\mathbf{t_{2g}}^4 \cdot \mathbf{e_g}^0$ configuration is favored when $\Delta_o^* > \text{PE}$. These complexes are known as 'low- spin' or 'strong-field' complexes. Note that $$\Delta_0$$ < PE < Δ_0 * **Figure 3:** Energy level diagrams for a d⁴ configuration for weak field and strong field ligands Total Stabilization Energy (**TSE**) = CFSE + m x Pairing Energy (**PE**); m = number of orbitals with paired electrons. For \mathbf{t}_{2g}^{5} , \mathbf{e}_{g}^{0} configuration, $$TSE = CFSE + 2 PE = -2\Delta_0 + 2PE$$ Similarly, for the configurations $t_{2g}^{6}.e_{g}^{0}$ and $t_{2g}^{6}.$ ${f e_g}^1$, total stabilization energies are -2.4 Δ_o +3PE and -1.8 Δ_o +3PE, respectively. ### **CFT for Tetrahedral Complexes** In tetrahedral complexes, \mathbf{t}_{2g} orbitals situated between x, y and z axes, and strongly interact with incoming ligands than \mathbf{e}_{g} orbitals. Therefore, \mathbf{t}_{2g} orbitals become less stable due to their closeness to the ligands, while \mathbf{e}_{g} orbitals become more stable (see Figure 4). **Figure 4:** Energy level diagram for a set of five *d*-orbitals in the prescence of a tetrahedral crystal field Note that $\Delta_{t} \approx 0.5\Delta_{0}$ where 't' refers to tetrahedral. Tetrahedral complexes are favored when; - Ligands are large and bulky - Ligands are weak field where Δ_{\downarrow} is quite small - Electronic configuration of the metal centre is d⁰, d⁵ or d¹⁰. For both octahedral and tetrahedral complexes, CFSE is zero for d⁰, d⁵ and d¹⁰ configurations. But for all other configurations, the octahedral CFSE is greater than that of the tetrahedral CFSE; thus octahedral complexes are more stable than tetrahedral complexes. #### CFT for square-planar complexes Generally, d^8 configurations show square-planar geometry. It can be achieved by removing two axial ligands of an octahedral complex. The energy of the orbitals in the xy plane is increased, which makes d_z^2 orbital more stable than $d(x^2-y^2)$. Likewise, d_{xy} becomes less stable than d_{zx} and d_{yz} orbitals as shown in Figure 5. The magnitude of Δ_{sp} is roughly 1.3 times higher than Δ_o . **Figure 5:** Crystal Field Splitting in a Square-planar complex ## Magnetic properties Total magnetic moment (μ) of an unpaired electron of a paramagnetic complex arises due to its spin about the own axis and its orbital angular momentum. For first-row transition metals, μ is equal to 'spin only' magnetic moment (μ_s), as its orbital angular momentum is negligible. The relationship between μ_s and the number of unpaired electrons 'n' is, $\mu_s = \{n(n+2)\}^{1/2}$. The μ values are given in the Table 1 in Bohr Magneton (BM). **Table 1:** Data for an octahedral complex; X = d-electron distribution, Y = number of unpaired electrons n with the μ_c value in brackets | d ⁿ | Strong Field | | Weak Field | | |----------------|---|---------|--------------------------|---------| | | X | Y | X | Y | | d^1 | $t_{2g}^{1}.e_{g}^{0}$ | 1(1.73) | $t_{2g}^{-1}.e_{g}^{-0}$ | 1(1.73) | | d^2 | $t_{2g}^{2}.e_{g}^{0}$ | 2(2.83) | $t_{2g}^{2}.e_{g}^{0}$ | 2(2.83) | | d^3 | t _{2g} ³ .e _g ⁰ | 3(3.87) | $t_{2g}^{3}.e_{g}^{0}$ | 3(3.87) | | d^4 | $t_{2g}^{4}.e_{g}^{0}$ | 2(2.83) | $t_{2g}^{3}.e_{g}^{1}$ | 4(4.90) | | d ⁵ | $t_{2g}^{5}.e_{g}^{0}$ | 1(1.73) | $t_{2g}^{3}.e_{g}^{2}$ | 5(5.92) | | d^6 | $t_{2g}^{6}.e_{g}^{0}$ | 0(0.00) | $t_{2g}^{4}.e_{g}^{2}$ | 4(4.90) | | d^7 | $t_{2g}^{6}.e_{g}^{1}$ | 1(1.73) | $t_{2g}^{5}.e_{g}^{2}$ | 3(3.87) | | d ⁸ | $t_{2g}^{6}.e_{g}^{2}$ | 2(2.83) | $t_{2g}^{6}.e_{g}^{2}$ | 2(2.83) | | d ⁹ | $t_{2g}^{6}.e_{g}^{3}$ | 1(1.73) | $t_{2g}^{6}.e_{g}^{3}$ | 1(1.73) | | d^{10} | t _{2g} ⁶ .e _g ⁴ | 0(0.00) | $t_{2g}^{6}.e_{g}^{4}$ | 0(0.00) | # Color of transition metal complexes Most transition metal complexes are colored, as they transmit the complementary color of the absorbed light. Excitation of electrons between \mathbf{t}_{2g} and \mathbf{e}_{g} levels (or d-d transitions) occurs in the visible region. By analyzing the absorption spectra of these complexes, the size of Δ can be calculated. The possible electron excitations and their intensities are determined by the Laporte and Spin selection rules. #### **Problems** 1. - (a) What are the numbers of \mathbf{t}_{2g} and \mathbf{e}_{g} electrons of Cr in [CrBr₆]⁴⁻? Br⁻ is a weak field ligand. - (b) Calculate the CFSE and TSE in kJ mol⁻¹ if Δ_0 = 160 kJ mol⁻¹. - (c) Calculate the μ_s of $[CrBr_6]^{4-}$. 2. - (a) What is the d-electron configuration of Fe in $[\text{FeBr}_4]^{2-}$? - (b) Calculate the CFSE and TSE in kJ mol⁻¹ for this anion if $\Delta_0 = 180$ kJ mol⁻¹ and PE = 120 kJ mol⁻¹. - (c) Calculate the μ_s of [FeBr₄]²⁻ Vol. 37 No. 2, May 2020 57